PLANT CELL AND DEVELOPMENTAL BIOLOGY PCB 6528, section 7354, 3 credits SPRING 2022

MEETING TIME and PLACE

MWF, 3rd Period (9:35 - 10:25 a.m.), 2318 Fifield Hall

INSTRUCTORS

Gilles J. Basset, Course Coordinator

Horticultural Sciences Department 1109 Fifield Hall gbasset@ufl.edu 352-273-4808 By appointment Kevin Folta Horticultural Sciences Department 1251 Fifield Hall kfolta@ufl.edu 352-273-4812 or 352-273-4766 Office hours TBA on an individual basis by appointment

COURSE DESCRIPTION

The main objective of this course is for students to obtain a basic knowledge of the organization, dynamics, and development of plant cells and organs. Students should additionally learn the experimental approaches commonly used in plant cellular and developmental biology research and critically evaluate literature that forms the basis for current knowledge in these fields.

This course has four modules that are classified as: cellular organization and evolution, organelle genomes and transcription, signal transduction, and plant development. Each module reintroduces student to the basic concepts of cell and organelle biology. Students are quickly propelled into analyzing primary literature as a source of scientific knowledge and taught how to read and critique papers, gather information from multiple sources independently, design experiments, and interpret data. Successful completion of PCB 6528 will establish a strong foundation for advanced specialty courses, will complement advanced courses in molecular biology, and will provide the tools necessary for a career in experimental sciences.

LEARNING OBJECTIVES AND OUTCOMES

Students who successfully complete the reading and discussion of current research papers and lecture presentations in all four modules will be able to:

- Critically read and evaluate experimental science related to endosymbiosis, cellular evolution, cellular organization, and cellular dynamics, and development of plant cells and organs, and be able to explain the experiments to others.

- Find and utilize computational biology methods (*e.g.* prediction of subcellular targeting, coexpression analysis and gene network modeling) that graduate students can apply to their own research

- Find the required background material necessary to understand primary papers through web and reference database searches (*e.g.* KEGG, SUBA4, BRENDA) and textbook consultation

- Design experiments to test hypotheses using the information and techniques presented to them in lectures and papers.

PREREQUISITES

PCB 5065 Advanced Genetics or PCB 5530 Plant Molecular Cell Biology or permission

Month	Date	Торіс	Instructor		
	Sections 1 and 2				
January	W05	Cell organization and organelle origins [1]	Basset		
	F07	Cell organization and organelle origins [2]	Basset		
	M10	Witnessing endosymbiosis	Basset		
	W12	Witnessing intracellular gene transfer (mitochondria> nucleus) [1]			
	F14	Witnessing intracellular gene transfer (plastids > nucleus) [2]	Basset		
	M17	Martin Luther King Jr. Day			
	W19	Structure and content of land plant plastomes	Basset		
	F21	Observing plastids in living cells (micrographs and movies) [1]	Basset		
	M24	Homework 1 (Horizontal gene transfer of organelle genomes and transplastomics)	Basset		
	W26	Observing plastids in living cells (micrographs and movies) [2]	Basset		
	F28	Plastid division	Basset		
	M31	Structure and content of land plant chondromes	Basset		
February	W02	Transcription in plastids and mitochondria	Basset		
	F04	Observing mitochondria in living cells (micrographs and movies)	Basset		
	M07	Import machineries of organelles- Plastids and mitochondria	Basset		
	W09	Retention of membrane proteins in the ER and the Golgi apparatus	Basset		
	F11	Homework 2 (Predictions of subcellular targeting)	Basset		
	M14	Import machineries of organelles- Peroxisomes and nucleus	Basset		
	W16	Subcellular fractionation methods	Basset		
		Section 3			
	F18	Covalent Protein Tagging/Proteolysis	Folta		
	M21	Introduction to hormones-what they are and how they work	Folta		
	W23	Auxins	Folta		
	F25	Discussion paper	Folta		
	M28	Two-component regulators, ethylene and cytokinins	Folta		
March	W02	Strigolactones	Folta		
	F04	SA, JA and pathogens	Folta		
		Spring Break (March 05 – March 12)			
	M14	Discussion paper	Folta		
	W16	Discussion paper	Folta		

CLASS AND EXAM SCHEDULE

	F18	Phytochrome Signaling and Integration	Folta			
April	M21	Blue Light Signaling and Response/Circadian Clocks	Folta			
	W23	Discussion paper	Folta			
		Section 4				
	F25	Homework 3 (Experimental designs for GFP-fusion strategies)	Basset			
	M28	Observing peroxisomes, ER, Golgi and nucleus in living cells (micrographs and movies) [1]	Basset			
	W30	Observing peroxisomes, ER, Golgi and nuclei in living cells (micrographs and movies) [2]	Basset			
	F01	Observing peroxisomes, ER, Golgi and nuclei in living cells (micrographs and movies) [3]	Basset			
	M04	Discussion paper (ER/Golgi targeting)	Basset			
	W06	Cytokinesis	Basset			
	F08	Cytokinesis (micrographs and movies)	Basset			
	M11	Discussion paper (Peroxisome purification and proteomics)	Basset			
	W13	Discussion paper (Cryptic targeting signals/Dual targeting)	Basset			
	F15	Homework 4 (Plastoglobule targeting)	Basset			
	M18	Plasmodesmata	Basset			
	W20	Comprehensive exam practice	Basset			

READING

There is no required textbook for this course. However, there will be a great quantity of required reading in the form of review and research articles from the primary literature. These will be provided in electronic format. Discussion papers will be provided one week prior to the scheduled discussion. Papers will be emailed to students or the references given, allowing students to download papers, which will be freely available to members of the UF faculty and student body through the library system. Students are queried for availability of computers and color printers and accommodations will be made to ensure that each student has access to high quality reproductions of class notes and research papers. Each section of the course will feature a discussion paper from the current literature. The following books may be useful for background reading on various topics.

- 1. Molecular Biology of the Cell, 4th edition. Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter. New York: Garland Science; 2002. This book is available in search mode on NCBI's Pubmed
- 2. Biochemistry and Molecular Biology of Plants, B. Buchanan, W.Gruissem & R. Jones, 2000, ASPP (ISBN 0-943088-39-9) Wiley and sons.

CLASS ATTENDANCE

Students are expected to attend all class sessions. Attendance at sessions featuring a Discussion Paper is mandatory. Class attendance and participation are a major component of student's grades.

CLASSROOM ETIQUETTE

You are expected to be courteous to your fellow students, be on time and turn off your cell phones. Your attendance at all classes is a firm expectation, but if you are ill or an emergency occurs, you are expected to contact your instructor prior to the scheduled class time.

Students are allowed to record video or audio of class lectures. However, the purposes for which these recordings may be used are strictly controlled. The only allowable purposes are (1) for personal educational use, (2) in connection with a complaint to the university, or (3) as evidence in, or in preparation for, a criminal or civil proceeding. All other purposes are prohibited. Specifically, students may not publish recorded lectures without the written consent of the instructor.

GRADING POLICY

The four sections of this course will be graded independently and non-cumulatively. The final grade will be determined by performance on 4 sections. Each section will be worth 100 points. For Sections 1/2 and 4 (Basset), homeworks will be assigned and graded and will constitute 80% of the grade. Active participation in class discussions is an essential part of this course and will constitute 20% of the grade. For Sections 3 (Folta), a section exam will test student comprehension of the material and ability to apply it to novel situations and will constitute 80% of the grade; 20% of the grade will be assigned to lecture and paper discussions.

The final grading scale is based on historical performance cut offs, as shown in the table below:

Letter Grade*	Grade Points**	Percentage
А	4.0	80-100
B+	3.33	70-79
В	3.0	60-69
C+	2.33	55-59
С	2.0	40-54
E	0	<39

*Letter grades below C are not considered passing grades at the graduate level, therefore not included. Letter grades A- and B- do not reflect a statistically different performance at the graduate level and are not included.

**Information on current UF general grades and grading policies can be found at https://catalog.ufl.edu/ugrad/current/regulations/info/grades.aspx and at the Graduate Catalog at http://gradcatalog.ufl.edu/content.php?catoid=2&navoid=762#grades

EXAMS

The course is divided into four sections. Sections 1/2 and 4 will be graded based on the continuous evaluation of homework. Sections 3 will have an exam following the completion of the section. Exams are either closed book/notes or take-home (see schedule). If a student has another exam scheduled for the time of a PCB 6528 exam, or if a PCB 6528 exam falls on a religious holiday that a student traditionally observes, an alternate time will be arranged for that student's exam. Please notify the instructor of these conflicts in advance of the exam. Students who cannot take a scheduled exam due to illness or last minute emergencies should contact the instructor prior to the exam if at all possible. Arrangements will be made for a makeup exam in those cases.

ACADEMIC HONESTY

As a student at the University of Florida, you have committed yourself to uphold the Honor Code, which includes the following pledge: "We, the members of the University of Florida community, pledge to hold ourselves and our peers to the highest standards of honesty and integrity." You are expected to exhibit behavior consistent with this commitment to the UF academic community, and on

all work submitted for credit at the University of Florida, the following pledge is either required or implied: "On my honor, I have neither given nor received unauthorized aid in doing this assignment."

It is assumed that you will complete all work independently in each course unless the instructor provides explicit permission for you to collaborate on course tasks (e.g. assignments, papers, quizzes, exams). Furthermore, as part of your obligation to uphold the Honor Code, you should report any condition that facilitates academic misconduct to appropriate personnel. It is your individual responsibility to know and comply with all university policies and procedures regarding academic integrity and the Student Honor Code. Violations of the Honor Code at the University of Florida will not be tolerated. Violations will be reported to the Dean of Students Office for consideration of disciplinary action. For more information regarding the Student Honor Code, please see: http://www.dso.ufl.edu/sccr/process/student-conduct-honor-code.

SOFTWARE USE

All faculty, staff and students of the university are required and expected to obey the laws and legal agreements governing software use. Failure to do so can lead to monetary damages and/or criminal penalties for the individual violator. Because such violations are also against university policies and rules, disciplinary action will be taken as appropriate.

SERVICES FOR STUDENTS WITH DISABILITIES

The Disability Resource Center coordinates the needed accommodations of students with disabilities. This includes registering disabilities, recommending academic accommodations within the classroom, accessing special adaptive computer equipment, providing interpretation services and mediating faculty-student disability related issues. Students requesting classroom accommodation must first register with the Dean of Students Office. The Dean of Students Office will provide documentation to the student who must then provide this documentation to the Instructor when requesting accommodation.

• Disability Resource Center, 0001 Reid Hall, 352-392-8565, www.dso.ufl.edu/drc/

CAMPUS HELPING RESOURCES

Students experiencing crises or personal problems that interfere with their general well-being are encouraged to utilize the university's counseling resources. The Counseling & Wellness Center provides confidential counseling services at no cost for currently enrolled students. Resources are available on campus for students having personal problems or lacking clear career or academic goals, which interfere with their academic performance.

 University Counseling & Wellness Center, 3190 Radio Road, 352-392-1575, www.counseling.ufl.edu/cwc

Counseling Services Groups and Workshops Outreach and Consultation Self-Help Library Training Programs Community Provider Database

• Career Resource Center, First Floor JWRU, 392-1601, www.crc.ufl.edu