

HOS6932, Section 3355, Class 013290 3 Graduate Credits

Meets: 10:40-11:30 am on Mon, Wed, Fri; 100% Online via Zoom, with materials on Canvas (Synchronous at fixed times; no physical presence is required)

Instructors (Horticultural Science Department):						
Cătălin Voiniciuc (Coordin	ator) Bldg. 885, 0003B; (352) 273-4782, <u>cvoiniciuc@ufl.edu</u>					
Andrew Hanson	Fifield Hall, 2143; (352) 273-4856, <u>adha@ufl.edu</u>					
Edmar R. Oliveira-Filho	Fifield Hall, 2302; (352) 273-4859, ramosdeoli.edmar@ufl.edu					

Course Description

This course is designed to introduce graduate students to the basic principles of synthetic biology (SynBio) as well as the latest advances in this emerging field. Topics will include the implementation of Design-Build-Test-Learn cycles for metabolic pathways and regulatory circuits, directed evolution, and biofoundry-driven automation. Emphasis will be on plant systems, with bacterial and yeast systems included when appropriate to accelerate the study of plant enzymes and products. This online class will enable state-wide participation and combine lectures with interactive discussions and activities. Due to team-based activities, **class registration is limited to only 16 students**. This class will empower students to identify, evaluate, and effectively present SynBio innovations that address agricultural challenges.

Knowledge Prerequisites: There are no strict prerequisites, but basic knowledge of molecular biology such as the flow of information (DNA \rightarrow RNA \rightarrow protein) in living organisms is needed.

Learning Objectives:

After successful completion of this course, students will be able to:

- Recognize the origins of SynBio, the state of the art, and emerging opportunities
- Analyze and evaluate the feasibility of proposed solutions to real-world problems
- Compare SynBio successes in microbial systems with recent advances in plants
- Demonstrate how biological cells can be programmed to make designer molecules
- Propose SynBio approaches to address relevant biological challenges
- Predict the bottlenecks to reaching the desired targets and design alternatives

Office hours: The course coordinator will be generally available 3 to 4 pm on Fridays. Meetings can be arranged by personal appointment via email to the instructors using the contact details above. Questions and discussions about course content are encouraged to be posted on the Canvas discussion forum. Please follow these guidelines for effective online interactions:

- Guide from UF's Quality Assurance Committee: Netiquette Guide for Online Courses
- Email etiquette rules: https://www.inc.com/business-insider/email-etiquette-rules.html

Weekly Schedule and Assignments

- Subtopics that include assignments are marked in **bold**
- UF approved holidays are shared in blue

Date	Class	Instructor	Module	Subtopic	
Wed, Aug 23	01	Voiniciuc	SynBio & its origins	Scope of SynBio	
Fri, Aug 25	02	Hanson		History of SynBio and Plant SynBio	
Mon, Aug 28	03	Voiniciuc		DBTL cycle and examples	
Wed, Aug 30	04	Voiniciuc		Biofoundries and industrialization of biology	
Fri, Sept 1	05	Hanson	Applying Fermi calculations	Worked examples in class	
Mon, Sept 4		Holida	y – Labor Day	-	
Wed, Sept 6	06	Hanson		Presentation/discussion of Fermi calculations 1	
Fri, Sept 8	07	Hanson		Presentation/discussion of Fermi calculations 2	
Mon, Sept 11	08	Voiniciuc	Cells as circuit boards	Logic gates & building them in cells	
Wed, Sept 13	09	Voiniciuc		Bacterial logic gates and metabolic valves	
Fri, Sept 15	10	Voiniciuc		Plant logic gates – development	
Mon, Sept 18	11	Voiniciuc		Plant logic gates – physiology/metabolism	
Wed, Sept 20	12	Voiniciuc	Biosensors & optogenetics	Design principles	
Fri, Sept 22	13	Voiniciuc		Bacterial biosensors	
Mon, Sept 25	14	Voiniciuc		Plant and eukaryotic biosensors	
Wed, Sept 27	15	Voiniciuc		Non-plant optogenetics	
Fri, Sept 29	16	Voiniciuc		Plant optogenetics activity	
Mon, Oct 2	17	Hanson	Directed evolution (DE)	Introduction to DE DE and genome editing (GE)	
Wed, Oct 4	18	Hanson		Classical DE – enzyme examples	
Fri, Oct 6		Holiday – Homecoming		-	
Mon, Oct 9	19	Hanson		Continuous DE – enzyme examples	
Wed, Oct 11	20	Hanson		Plant DE-GE activity	
Fri, Oct 13	21	Hanson	Synthetic metabolism	Concept of going beyond nature	
Mon, Oct 16	22	Hanson		In vitro synthetic metabolism	
Wed, Oct 18	23	Hanson		Microbial synthetic metabolism	
Fri, Oct 20	24	Hanson		Plant synthetic metabolism	
Mon, Oct 23	25	Voiniciuc	Making & breaking polymers	Polymers and biotechnology	
Wed, Oct 25	26	Voiniciuc		Engineered living materials activity	
Fri, Oct 27	27	Voiniciuc		Designer polysaccharides	
Mon, Oct 30	28	Voiniciuc		Lignin valorization	
Wed, Nov 1	29	Voiniciuc		The lignocellulosic biomass challenge	

Date	Class	Instructor	Module	Subtopic			
Fri, Nov 3	30	Oliveira- Filho	Plant-related Industrial SynBio	Example 1 - Artemisinin			
Mon, Nov 6	31	Oliveira- Filho		Example 2 - Amyris products			
Wed, Nov 8	32	Oliveira- Filho		Scale-up and its problems			
Fri, Nov 10		Holiday – Veterans Day Observed		-			
Mon, Nov 13	33	Voiniciuc		Plants for biofortification			
Wed, Nov 15	34	Voiniciuc & Hanson		Class project presentations and critiques: Biofuels			
Fri, Nov 17	35	Voiniciuc & Hanson		Class project presentations and critiques: Carbon sequestration			
Mon, Nov 20	36	Voiniciuc & Hanson		Class project presentations and critiques: Biological N fixation			
Wed, Nov 22		Holiday – Thanksgiving		-			
Fri, Nov 24		Holiday – Thanksgiving		-			
Mon, Nov 27	37	Voiniciuc	New Tools & Future SynBio	In silico tools for SynBio			
Wed, Nov 29	38	Voiniciuc		Plant transformation barriers			
Fri, Dec 1	39	Voiniciuc		Emerging plants for SynBio			
Mon, Dec 4	40	Voiniciuc		Your SynBio Adventure – Part I			
Wed, Dec 6	41	Voiniciuc		Your SynBio Adventure – Part II			

Student Evaluation and Grading

The class will combine lectures with interactive assignments that will be done primarily in small groups (activities 1 and 5), as well as some individual tasks. For instance, students will have take-home assignments to assess the scale and feasibilities of SynBio solutions to global problems using Fermi calculations. The primary semester project (activity 5) will involve a poster preparation and in-class presentation. For all assignments, a portion of the grade will be based on professional attitude and active participation in the discussions. Expectations and standards for all the activities will be detailed in class and will follow the UF Grades and Grading Policies.

Activity		Points	% of Grade
1) Fermi calculations and Discussion		60	15%
2) Biosensors and Optogenetics Activity		20	5%
3) Plant DE-GE activity		20	5%
4) Engineered Living Materials Activity		20	5%
5) SynBio Solutions to Planetary Problems		200	50%
6) Your SynBio Adventure and Discussion		80	20%
	Total	400	100%

Class Attendance

This course will be delivered synchronously online via Zoom, so students will need internet access and are expected to log in prior to scheduled class times so that we can start on time. Recording and sharing of materials is prohibited without the written consent of the instructors. Since attendance to all classes is expected, contact the coordinator **prior to** the scheduled meeting if you are ill or an emergency occurs. Requirements for class attendance and other work are consistent with university policies that can be found at:

https://catalog.ufl.edu/ugrad/current/regulations/info/attendance.aspx

Course Materials

No textbooks are required for this class, since there is no book that fully covers this rapidly developing field. Review and research articles will be provided to students electronically on Canvas. The required and optional reading will be available at least a week before each lecture.

• There are no materials and supplies fees for this course.

Online Course Evaluation

Students are expected to provide professional and respectful feedback on the quality of instruction in this course by completing course evaluations online via GatorEvals. Guidance on how to give feedback in a professional and respectful manner is available at https://gatorevals.aa.ufl.edu/students/.

University's Honesty Policy

UF students are bound by The Honor Pledge which states, "We, the members of the University of Florida community, pledge to hold ourselves and our peers to the highest standards of honor and integrity by abiding by the Honor Code. On all work submitted for credit by students at the University of Florida, the following pledge is either required or implied: "On my honor, I have neither given nor received unauthorized aid in doing this assignment."

- Student Honor Code: <u>http://www.dso.ufl.edu/sccr/process/student-conduct-honor-code</u>
- Guidelines for acceptable use of AI Tools: <u>https://go.ufl.edu/edis-ai-v1</u>

Health and Wellness Resources

- University Counseling & Wellness Center, 352-392-1575, <u>www.counseling.ufl.edu/cwc/</u>
- Matter We Care, www.umatter.ufl.edu/
- Career Resource Center, First Floor JWRU, 392-1601, <u>www.crc.ufl.edu/</u>
- Student Success Initiative, http://studentsuccess.ufl.edu

Students with Disabilities

To request classroom accommodations, please consult the *Disability Resource Center*, 0020 Reid Hall, 392-8565, <u>www.disability.ufl.edu</u>

Student Complaints

• You can file and resolve any complaints about your experience in this course in the following site: www.distance.ufl.edu/student-complaint-process